Dynamic Analyses on Network Traffic Flow

-Applications of Queueing Models-

Institute of Industrial Science,
University of Tokyo
Masao Kuwahara

1. Cumulative Figures for **Point** Queues & **Physical** Queues
(A relationship between the cumulative figures and the time-space diagram)

2. Dynamic Assignment
 - DUO (Dynamic User Optimal)
 - DUE (Dynamic User Equilibrium)
 - DSO (Dynamic System Optimum)

3. Departure Time Choice
 Overview of recent studies

4. Future Perspective
Static Assignment
Wardrop Principles

Beckmann Type Formulation

Point Queue vs. Physical Queue
3-dim Representation of Traffic Flow
3-dim Representation of Traffic Flow

Cumulative Trips

Departure Curve

Arrival Curve

time

Flow

space

Applications of Physical Queues

Freeway

On-Ramp

(a)

Bottleneck

Arterial

(b)

Grid-Lock

(c)

(d)
Kinematic Wave Theory

- Flow, Forward Wave Speed \(f(x,t) \)
- Backward Wave Speed, Density, \(k(x,t) \)
- Forward Wave
- Backward Wave
- Shock Wave
- Characteristic Curve

Vehicle Trajectories and Waves

- Cumulative Trips
- Forward Wave
- Shock Wave
- Backward Wave

Applications to Network Analysis:
Dynamic Assignment, Signal Control, etc.
Dynamic Assignment

Assignment Principles

DUO (Dynamic User Optimal)
DUE (Dynamic User Equilibrium)
DSO (Dynamic System Optimal)

Constraints

1. Flow Conservation
2. First In First Out discipline
3. Non-Negativity of Traffic Flows

DUO (Dynamic User Optimal)

Route Choice based on present and past information (“Reactive” assignment)
This principle becomes realistic by use of ITS instruments.

Point Queue
Many-to-Many OD Formulation
Solution Algorithm
(Decomposition with respect to the current time.)

Physical Queue
Many-to-Many OD + Physical Queues
DUE (Dynamic User Equilibrium)

Route Choice is “Predictive”: more difficult than DUO

Point Queue
- Many-to-One (One-to-Many) OD
 - Decomposition with respect to departure(arrival) time at the single origin(destination).

Physical Queue
- Many-to-One (One-to-Many) OD
 - Formulation and Solution Algorithm (OK)

Research Needs on DUE

Extension to Many-to-Many OD

1. Combination of Many-to-One Problems

(2) Conversion to Mathematical Problems
- Non-linear Complementary Problem
- Fixed Point Problem
- Variational Inequality Problem
 - (using Route Variables)
DSO (Dynamic System Optimal)

Point Queue
- Easy Formulation

Min : Total Travel Cost
s.t. : 1. Flow Conservation
 2. First In First Out
 3. Non-Negativity

Non-unique solutions due to FIFO constraints.

- LP Formulation for Many-to-One (One-to-Many) OD
 by Daganzo, Ziliaskopoulos

Physical Queue
- Inclusion of Physical Queues would be possible
 : use of traffic simulations

Research Needs on DSO

A Solution Algorithm for Many-to-Many OD
: How efficiently find the global optimal

Basic Strategy: Equilibrate Dynamic Marginal Costs

Dynamic Marginal Cost = Present Cost Change
+ Future Cost Change

Kuwahara, Yoshii, and Kumagai: Strategies for Dynamic System Optimum
and the Ramp Control Application-A fundamental theory on a simple network –
Submitted to Transp. Res. B

Kuwahara: A Theoretical Analysis on Dynamic Marginal Cost Pricing,
TRANSPORTATION PLANNING AND MANAGEMENT IN THE 21st
CENTURY, Proceedings of the Sixth Conference of Hong Kong Society for
Transportation Studies, pp.28-39
Departure Time Choice Problem

Mainly for Commute Trips on Highways which have clear Time Constraints

Late 1960s: Analysis by Economists
Vickrey, Henderson, etc.

Late 1970s: Single Bottleneck Analysis:
Hurdle, Hendrickson, Smith, Daganzo
Uniqueness and Existence of the Solution

Late 1980s: Several Extensions
Many Bottlenecks (Kuwahara, Depalma, etc.)
Non-Identical Travelers (Newell)
Stochastic Models (Ben-Akiva, Mahmassani, etc.)

Single Bottleneck Analysis

Residential Area \[\xrightarrow{\text{Cumulative Trips}}\] Queueing Delay \[\xrightarrow{\text{Equilibrium Arrival}}\] Work Starting Time \[\xrightarrow{\text{Schedule Delay}}\] Desired Departure Time from a Bottleneck

Bottleneck Work Places

Work Starting Time = Desired Departure Time from a Bottleneck
1. Many Bottleneck Problem

2. Non-identical Travelers (time value variation) by Newell

3. Stochastic Analysis (random utility) by Ben-Akiva, Mahmassani etc.
Simultaneous Analysis

- Route
- Departure Time
- Mode

Control

- DUO
- DUE
- DSO

Road Pricing, Flex Time, Staggered Commuting
Ramp Control, Travel Information, Signal Control

Human Behavior

- Human Response to Information, Pricing
- Route Choice & Departure Time Choice behavior

Data Diversity

- Sensing Technology

Needs Diversity

- Various Output
- Requirement

Dynamic Analysis

- Spatially+Temporally

Interdisciplinary

- Traffic Engineering
- Transportation Planning
- Economics
- Electric Engineering
- Mechanic Engineering

Simulation

- Modelling
 - Choice Behavior
 - Vehicle Motion
- Verification
 - Validation
- Application
- Interpretation

Theoretical Analysis

- Discovery of General Rules
- Construction of Model Structure
- Preparation of Theoretical Solution
 - Uniqueness/Existence
 - Qualitative Consequences
- Output Interpretation
 - Sensitivity Analysis (IN→OUT)