Impacts of Shared Autonomous Vehicles: Tradeoff between **Parking Demand Reduction and Congestion Increase**

シェアリング自動運転導入のインパクト:駐車需要削減と混雑増加のトレード・オフ

東京大学生産技術研究所大口研究室(交通制御工学)

http://www.transport.iis.u-tokyo.ac.jp/

Yusuke KUMAKOSHI, Hisatomo HANABUSA, Takashi OGUCHI

1. Background and Objective

- Shared autonomous vehicles (SAVs) have:
 - Pros: Reduce parking demand by replacing private vehicles;
 - Cons: Increase congestion by empty fleets.
- If all private vehicles are replaced by SAVs:
 - Which type of land use will reduce the parking demand the most?

3. Case Study of Okinawa Mainland

- **Study area:** Naha City with surrounding zones
- Reduction in parking demand:
 - 94% reduction in total, periphery zones > core zones;
 - Office zones (-39%) > residence zones (-15%) > others. ullet

Parking demand reduction (SAV scenario from current situation)

- In which part of the road network will the congestion lacksquareincrease the most?
- **Objective:** Estimate the impacts of SAVs at the local scale by simulating their operation.

2. Simulation Framework

- Scenarios: <u>1. SAV scenario</u> with 100% SAVs & **<u>2. Current situation</u>** with 100% private vehicles.
- Simulation structure:
 - Three main modules: Demand generator, SAV dispatcher & Traffic flow simulator.

Congestion increase:

- Vehicle Kilometer Traveled (VKT) & delay time increased (+16% & +33%), average travel speed reduced(-9%);
- For proportion of increased delay time: periphery zones > core zones.

Proportion of increased delay time _ Delay time_{SAV} – Delay time_{current} Delay time free-flow

~ 0% $-0\% \sim +10\%$

Note:

- Area is divided into zones according to land use;
- Demand is generated based on real traffic data;
- Parking demand is estimated using different methods for two scenarios.

Kumakoshi, Y., Hanabusa, H., & Oguchi, T. (2021).

4. Discussion & Conclusion

- Reasons for the parking demand reduction:
 - Smaller SAV fleet size; lacksquare
 - Efficient movement of SAVs. \bullet
- Reasons for increased congestion:
 - The empty fleets and detour behavior of SAVs;
 - Differences in the traffic capacity of road network and the spatial density of SAV stations \rightarrow heterogeneity between core and periphery areas.

Conclusion:

SAVs reduce parking demand greatly in office & residence zones and increase traffic flow mostly in periphery areas;

to totally remove detriments.