Transparent and Interpretable Control by Reinforcement Learning Agents An Empirical Study on Linear Function Approximators for Isolated Intersections 分かりやすく解釈可能な強化学習エージェント単独交差点制御のための線形関数適用の実証実験

東京大学生産技術研究所大口研究室(交通制御工学) http://www.transport.iis.u-tokyo.ac.jp/

Sahachaisaree S., Han T., Oguchi T.

1) Background

 Reinforcement learning (RL) is a machine learning paradigm used to solve sequential decision-making problems; e.g., urban traffic signal control.

2) Control problem setup

- Following the research question, a control problem is setup for numerical experiments.
 - Intersection of 2 two-lane roads with no turning bays
 - Total vehicle arrival rate is at a moderate level, far

Value-based RL agents are ulletmostly represented by complex function state feature approximators (FA's).

• Their parameters are too numerous and cannot be interpreted.

Research question ?

Could RL agents that are using the simplest linear FA's reach the same state feature performance level of those using more complex FA's?

 \mathbf{w}_{π}^{ii}

- from the saturation level.
- 100-m detection range ulletfrom the stop line for each approach lane
- Based on the simulated traffic at intersection, a Markov decision problem (sequential decisionmaking problem) is formulated.
 - State features : lane queue length [veh] and one-hot encoded active stage [-]
 - Reward function : sum of queue lengths [veh]
 - Discrete actions : N-S green or W-E green with action interval of 10 seconds in the simulation

3) Proposed techniques and experiments design

- Initialise the linear FA with informed initial weights
- Use a least-squares solution **II**. instead of stochastic gradient descent (SGD)

ϕ_1, ϕ_2			11	
$\begin{bmatrix} +1 & -1 \end{bmatrix} x_{\phi_1}$	#	FA	Informed	Learning
$\begin{vmatrix} -1 & +1 \\ 1 & +1 \end{vmatrix} x_{\phi_2}$	exp		initial weights	method
$\sum_{p=1}^{nfo} = \begin{vmatrix} -1 & +1 \\ +1 & -1 \end{vmatrix} \frac{x_{W,queue}}{x_{N,queue}}$	1	ANN	Not possible	SGD
$\begin{vmatrix} -1 & +1 \\ +1 & -1 \end{vmatrix} \begin{array}{c} x_{E,queue} \\ x_{C,queue} \\ \end{array}$	2	Linear	No	SGD
nformed initial weights	3	Linear	Yes	SGD
	4	Linear	Yes	Least-squares
ed as the	5	Linear	Yes	No learning

An artificial neural network (ANN) \bullet with one 32-neuron hidden layer is use more complex FA as a counterpart to linear FA.

*each experiment is repeated 10 times

4) Result and conclusion

