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• Basic idea
• Separate vehicle from different direction temporally to 

ensure safety. Bring extra waiting time to road users.

• Approach
• Produce phases and corresponding duration for 

response arriving vehicle (demand). 

1.Traffic Signal Control (TSC)

• The RL is an autonomous control method to take 
responsive actions (a) with observed (s) states. 
Supposing the effect of actions could be measured 
as the reward r, the RL only needs to learn action 
under various states to achieve higher reward. 

• TSC problem could be modelled as:
• States: real time traffic demand (how many vehicle 

incoming?)
• Action: control logic (which phase to choose?)
• Reward: measure of efficiency (how effective can the 

vehicles be served?)

2.Reinforcement Learning(RL) Modelling

3.Predictive RL with Queue Estimation

• The validation of the proposed method 
(QueueLearner) is conducted with SUMO 
(Simulation of Urban MObility).

• Comparison with both traffic engineering methods 
(FIX, LQF, RHS) and traditional reinforcement (RL, 
DRL) learning methods.

• Better robustness for demand increasing.

• Fast adaption of traffic change than traditional RL

4.Simulation Experiment & Results

• Coordinated intersections along one artery by communication among decentralized multi-agent RL system.
• Share-brain for computational economic
• Green-wave for less stoppage

5.More Related Information

Fig.1 the isolated 
intersection and its 
phase combinations

Fig.3 the TSC problem 
solved by RL methods

Fig.2 the control of 
traffic light

• A model-free RL has difficulty to 
understand how traffic state change 
through the time due to the naïve 
Markov assumption. 

• A queue estimation using input-
output (IO) model or  shock-wave 
(SW) model can predict future traffic 
state by considering real-time 
demand and the control behavior. 
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• Toward a more general urban road network
• Subscribe my google scholar for future 

outcomes 
[https://scholar.google.com/citations?user=jDMroEY
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