A Study on Predictive Deep Reinforcement Learning for
Isolated Intersection Signal Control
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1.Traffic Signal Control (TSC) 3.Predictive RL with Queue Estimation
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2.Reinforcement Learning(RL) Modelling 4.Simulation Experiment & Results

* The RLis an autonomous control method to take  The validation of the proposed method
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5.More Related Information

* Coordinated intersections along one artery by communication among decentralized multi-agent RL system.
* Share-brain for computational economic

* Green-wave for less stoppage Action Agentdata ﬁ communication
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