Modeling two-vehicle interaction at freeway - on ramp merging section with game theory

ゲーム理論を用いた高速道路合流部での二車相互作用のモデリング

東京大学生産技術研究所大口研究室(交通制御工学) http://www.transport.iis.u-tokyo.ac.jp/

E. Abdullaeva · T. Oguchi · A. Toriumi · M. Kato

1. Introduction

- Accurate modelling of merging interactions is important for designing freeway on-ramps and developing traffic management policies.
- Previous studies of merging behaviour either did not consider the impact of the merging and through drivers on each other or did not capture the mechanism of drivers' decision making.

3. Parameter Estimation

- The utility function for Driver *i* is formulated as: Distance Speed difference $u_a^i = \beta_a^{i0} + \beta_a^{i1}\Delta x + \beta_a^{i2}\Delta v + \epsilon_a^i$ Parameters
- The parameters are estimated with the method proposed by Bajari et al. that has theoretical guarantee.
- This study introduces a model of merging behaviour that aims at realistically reproducing the mechanism of drivers' decision making.
- We suppose that drivers would perform the actions that form Nash equilibrium and we implement the equilibrium selection mechanism.

2. Model formulation

- Game: non-cooperative, complete information.
- Set of actions of Driver *i*:
 - $\begin{aligned} \mathcal{A}_1 &= \{merge, wait\}, a_1 \in \mathcal{A}_1; \\ \mathcal{A}_2 &= \{yield, block\}, a_2 \in \mathcal{A}_2. \end{aligned}$
- Vector of actions: $a = (a_1 a_2)$;
- **Decision time:** the earliest moment when Vehicle 1 is located on the ramp and Vehicle 2 enters the interaction interval.

4. Empirical analysis

- "Zen Traffic Data" (<u>zen-traffic-data.net</u>) obtained on Hanshin Expressway is used for empirical analysis;
- 200 meters long merging section was selected;
- 1239 cases of merging interaction were found;

	۲ 1	Yield/Me
	ive	Block/M
	Dr	Block/W
	r 2	Yield/Me
	ive	Block/M
	Dr	Block/W

		β^0	β^{1}	β^2
Driver 1	Yield/Merge	0.162	1.527	1.118
	Block/Merge	0.013	-0.169	-0.170
	Block/Wait	-0.128	-1.211	-0.952
Driver 2	Yield/Merge	0.404	1.578	0.964
	Block/Merge	0.149	-0.115	0.125
	Block/Wait	0.036	-0.596	-1.110

Fig. 2 The merging section Table 2 The estimated parameters

Fig. 1 Freeway on-ramp merging section

			Driver 2		
			Yield	Block	
		Probability	$\pi_2(y)$	$\pi_2(b)$	
Driver 1	Merge	$\pi_1(m)$	$\left(u_{(my)}^1, u_{(my)}^2\right)$	$\left(u_{(mb)}^1,u_{(mb)}^2 ight)$	
	Wait	$\pi_1(w)$	$\left(u^1_{(wy)}, u^2_{(wy)}\right)$	$\left(u^1_{(wb)}, u^2_{(wb)}\right)$	

Table 1 The table of utilities for each driver

5. Conclusion

Our model demonstrates acceptable prediction ability of the merging situations but does not clearly

- Actions performed in each case were labelled;
- Parameters of our model were estimated;
- Total accuracy: MAE = 0.175;
- Yield/Merge accuracy: MAE = 0.025.

