# Drivers' Speeding Behavior on Expressway Curves: Exploring the Effect of Curve Radius and Desired Speed 

Charitha Dias ${ }^{1}$, Takashi Oguchi ${ }^{1}$, and Kasun Wimalasena ${ }^{2}$<br>${ }^{1}$ Institute of Industrial Science, the University of Tokyo, Japan<br>${ }^{2}$ Department of Civil and Environmental Engineering, University of Ruhuna, Sri Lanka

Triffic

## Introduction

Speed profiles can be considered as a key input for assessing safety, comfort and efficiency of highway or expressway segments (i.e., highway design consistency evaluation in broad sense). Most previous studies have modeled the speed on highway curve sections mainly as constant or a piecewise linear profiles. Such approaches may not realistically represent the properties of speed and acceleration behavior. Further, mechanisms underlying the speeding behavior through curve sections have not been comprehensively studied.
In this study, minimum-jerk concept, which has originally been applied in neuroscience and robotics domains, is utilized to explore drivers' speeding behavior on expressway curve sections. Previous studies (e.g., Dias et al. 2017) have verified that the trajectories of turning vehicles at intersections under free-flow conditions can also be described with minimum-jerk concept. GPS-based naturalistic driving data of vehicles traveled on Tomei expressway in Japan under free-flow conditions are used to explore the applicability and validity of the proposed approach.


Fig. 1: Comparison of empirical and minimum-jerk trajectory of a single turning vehicle under free-flow conditions (Dias et al. 2017)
(High resolution empirical trajectories were collected through video recordings at intersections $\rightarrow$ all boundary conditions and $t_{f}$ are known)

## Data Sources

- ETC 2.0 data on Tomei Expressway, Japan (GPS position, time and speed at 100-200 m intervals)
- Loop detector data to estimate free-flow state and to extract - Weather data free-flow vehicle trajectories from ETC - Incident data 2.0 database



## Modelling Approach

Minimum-jerk concept by Flash and Hogan (1985):
When moving a hand to an initial position to a final position within a given time duration $t_{f}$ the cost to be minimized in order to maximize the smoothness of the trajectory is:

$$
J=\frac{1}{2} \int_{0}^{t_{f}}\left(\left(\frac{d^{3} x}{d t^{3}}\right)^{2}+\left(\frac{d^{3} y}{d t^{3}}\right)^{2}\right) d t
$$

Solution (Flash and Hogan 1985):

$$
\begin{aligned}
& x(t)=a_{0}+a_{1} t+a_{2} t^{2}+a_{3} t^{3}+a_{4} t^{4}+a_{5} t^{5} \\
& y(t)=b_{0}+b_{1} t+b_{2} t^{2}+b_{3} t^{3}+b_{4} t^{4}+b_{5} t^{5}
\end{aligned}
$$

Where; $a_{j}$ and $b_{j}(j=\{0, \ldots, 5\})$ are constants
(This system of equations can be solved with 12 boundary conditions and $t_{f}$ )
$\rightarrow$ Originally used to study to study optimality characteristics of skilled human arm movements, movement planning of robot limbs, motion planning and control problems in autonomous vehicles
$\rightarrow$ Dias et al. (2017) described that turning vehicles at intersections under freeflow conditions follow minimum jerk principle

## Study Site Characteristics

Study site: Tomei Expressway, Japan The expressway linking Tokyo and Nagoya cities
" Length - 346.8 km (215.5 mi)
" Lane configuration -
both 2- and 3-lane sections
" Speed limits -
Mostly $100 \mathrm{~km} / \mathrm{h}$ sections and few $80 \mathrm{~km} / \mathrm{h}$ sections
" Horizontal curves -
Ranging from 550 m to $10,000 \mathrm{~m}$
» Vertical grades -
Ranging from $-4.9 \%$ to $+4.5 \%$


## Boundary Conditions to Obtain Minimum-Jerk Trajectory



Fig. 4: Curve segment reconstructed with recorded GPS points

Initial location: 100 m before the PC and set as $(0,0)$
" Final location: 100 m after the PT and set relative to $(0,0)$ based on GPS data

, Entry and exit speeds for each trajectory was linearly interpolated from adjacent speeds and then averaged " $t_{t}$ for each trajectory was estimated from speed and location data


Acceleration
" Assumption: individual drivers start decelerating 100 m before the PC and stop accelerating 100 m after the PT
(Different studies reported different values for different curve radii and different speeds E.g., Altamira et al. (2014): $50 \mathrm{~m}-230 \mathrm{~m}, 150 \mathrm{~m}-$ 170 m
Montella et al. (2015): 50 m - 200 m
Pérez Zuriaga et al. (2013): approximately 70 m )

Location, speed and acceleration vectors (on X-Y plane) provide 12 boundary conditions
Results (Estimation of speed and acceleration profiles)


Sensitivity (Effect of entry speed and entry acceleration)


|  | $V=100 \mathrm{~km} / \mathrm{h}, A=0 \mathrm{~m} / \mathrm{s} 2$ | $V=123 \mathrm{~km} / \mathrm{h}, \mathrm{A}=0 \mathrm{~m} / \mathrm{s} 2$ |
| :---: | :---: | :---: |
|  |  | 0.0000 |


\section*{| $\left(a_{1}, b_{1}\right)$ |
| :--- |
| $\left(a_{2}, b_{2}\right)$ |
| $\left(a_{3}, b_{2}\right)$ |
| $\left(a_{a}, a_{2}\right)$ |
| $(a, b)$ |
| $(a, b)$ |
| $(a, b)$ |
| $\left(a_{2}, b_{2}\right)$ |
| $(a, b)$ |
| $(a, b)$ |
| $(a, b)$ |}

$\rightarrow$ Different constants, but paths are overlapping
$\rightarrow$ Speed profiles are sensitive to entry (or desired) speed
$\rightarrow$ Speed profiles are not sensitive to entry/exit acceleration
$\rightarrow$ Acceleration profiles are sensitive to entry/exit speed and acceleration


## Summary

- Minimum-jerk concept can be applied to (indirectly) estimate speed and acceleration profiles on expressway curve segments when entry/exit conditions and movement times are known or can be approximated
- Effects of entry/exit accelerations and vertical grade should be further explored in future studies


## References

1. Flash, T., and N. Hogan. The coordination of arm movements: an experimentally confirmed mathematical model. Journal of neuroscienœ, Vol. 5, No. 7, 1985 , pp. 1688-1703. 2. Dias, C., M. Iryo-Asano, and T. Oguchi. Predicting Optimal Trajectory of Left-Turning Vehicle at Signalized Intersection. Transportation Research Procedia, Vol. 21, 2017, pp. 240-250.
 Transportation Research Board, No. 2521, Transportation Research Board of the National Academies, Washington, D.C., 2015, pp. 3-11..
2. Altamira, A., Y. García, T. Echaveguren, and J. Marcet. Acceleration and Deceleration Patterns on Horizontal Curves and Their Tangents on Two-lane Rural Roads. Presented at the 93rd annual meeting of the Transportation Research Board, Washington, D.C., 2014.
 Vol. 139, No. 11, 2013, pp. 1048-1057.
