
Develop  analytical  model  of  the  
dynamics  of  an  urban  rail  transit
• Consider  both  types  of  congestion  
and  physical  interaction  bet.  them

• High  analytical  tractability
• Capable  to  obtain  policy  
implications  on  management  
strategies
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Railway system
internal average train-flow: Q(k(t) ap(t))
dynamics of internal average train-density:
dk(t)

dt
= a(t)�Q(k(t), ap(t))

travel time: TT (t)

train in-flow: a(t)
its cumulative: A(t)

passenger in-flow: ap(t)
its cumulative: Ap(t)

train out-flow: Q(k(t), ap(t))
its cumulative: D(t)

passenger out-flow: dp(t)
(determined by the model)

its cumulative: Dp(t)

FIGURE 3 : Railway system as input-output system.

Formulation1
Let a(t) be in-flow of trains to the transit system, ap(t) be in-flow of passengers, d(t) be out-flow2
of trains from the transit system, and dp(t) be out-flow of passengers, at time t, respectively. We3
assume that the initial time is 0, and therefore t � 0 holds. Let A(t), Ap(t), D(t), and Dp(t)4
be cumulative numbers of a(t), ap(t), d(t), and dp(t), respectively (e.g., A(t) =

R t

0 a(s)ds). Let5
TT (t) be the travel time of a train (and a passenger) who entered the system at time t, and its initial6
value TT (0) be given as free-flow travel time under q = a(0), qp = ap(0). In order to simplify the7
formulation, the trip length of the passengers is assumed to be equal to that of trains.7 It means8
that TT is travel time of both of the trains and passengers. These functions can be interpreted as9
follows:10

a(t): trains’ departure rate from their terminal station at time t.11
ap(t): passengers’ arrival rate to platform of their origin station (e.g., from their home) at12
time t.13
d(t): trains’ arrival rate to their destination station at time t.14
dp(t): passengers’ arrival rate to their destination station at time t.15
TT (t): travel time of a train and passengers in the train from its origin (departs at time t)16
and destination. Note that their arrival time to the destination is t+ TT (t).17

Therefore, in reality, the a(·) and ap(·) will be determined by transit operation plan and passenger18
departure time choice, respectively. The d(·), dp(·), and TT (·) are endogenously determined by19
the proposed model.20

The train tra�c can be calculated as follows. First, in accordance with the manner of the21
exit-flow modeling, the exit-flow, d(t), is assumed as22

d(t) = Q(k(t), ap(t)) (20)

where the FD function, Q(·), is considered as an exit-flow function. It means that the dynamics of23
the transit system is modeled as24

dk(t)

dt
= a(t)�Q(k(t), ap(t)), (21)

7This assumption can be reasonable if average trip length is shared by trains and passengers. If they are di↵erent,
modification such as TTp(t) = TT (t)/�, where � is ratio of average trip length of the passengers by that of the trains,
would be useful.

Ø Microscopic assumptions on railway operation
• Passenger boarding time is modeled
using a bottleneck model:

• Cruising behavior of train is modeled
using the simplified car-following
model of Newell (2002):

Ø Steady state of railway operation based on above assumptions

Ø Fundamental diagram (FD) of rail transit operation relating
train-flow 𝑞, train-density 𝑘, and passenger-flow 𝑞p under every
steady state is expressed as:

𝑄 𝑘, 𝑞% =

𝑙𝑘 − 𝑞%/𝜇%
𝑔, + 𝑙/𝑣/

, if  𝑘 < 𝑘∗ 𝑞%

−
𝑙𝛿

𝑙 − 𝛿 𝑔, + 𝜏𝑙
𝑘 − 𝑘∗ 𝑞% + 𝑞∗ 𝑞% , if  𝑘 ≥ 𝑘∗ 𝑞%

𝑞∗ 𝑞% and 𝑘∗ 𝑞% are train-flow and train-density, respectively,
in a critical state with 𝑞p

𝑞∗ 𝑞% = 5678/98
:;<= >?⁄ <AB 𝑘∗ 𝑞% = (D6=)/>?6A

(:;<= >?⁄ <A)98D
𝑞% +

:;<D/>?
(:;<= >?⁄ <A)D

Ø Numerical  example  of  the  FD
• Piecewise  linear  relation
(i.e.  triangular)

• Left  side  ➔ free-flowing  regime
• Top  vertex  ➔ critical  regime
• Right  side  ➔ congested  regime
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FIGURE 2 : Numerical example of the FD.

TABLE 1 : Parameters of the Numerical Example.

parameter value
u 70 km/h
⌧ 1/70 h
� 1 km

µp 36000 pax/h
gb 10/3600 h
l 3 km

There is a congested state corresponding to a free-flowing state: for the aforementioned state, the1
corresponding congested state is with q = 15 (veh/h), k ' 0.55 (veh/km), and v̄ ' 27 (km/h). The2
critical state is q ' 22 (veh/h), k ' 0.42 (veh/km), and v̄ ' 52 (km/h); notice that it has the fastest3
average speed. The triangular q–k relation mentioned before is clearly shown in the figure; the4
“left side” of the triangle corresponds to the free-flowing regime, the “top vertex” is corresponding5
to the critical regime, and the “right side” corresponds to the congested regime.6

Relation to Actual Railway System7
Here we discuss relation between the proposed FD and actual transit system, as the proposed model8
and FD is based on simplified assumptions.9

The FD is fairly consistent with schedule-based train operation, although the FD does not10
consider a schedule explicitly. The FD can be considered as relation approximating an “average”11
operation schedule, if the schedule is designed to transport mass passenger demand (i.e., v = vf12
if hf > 0 and hf = 0 if v  0 hold). One of the meaning of the “average” is that it does not13
distinguish between non-express and express trains—this can be considered as limitation to some14
extent; however, it is not essential as many transit systems in central metropolitan area (e.g., metro)15
do not operates express trains.16

The FD is fairly consistent with operation with adaptive control strategies, such as17
scheduled-based and headway-based control (16, 30). This is because that aim of such adaptive18
control is usually to eliminate bunching—in other words, such control makes the operation steady.19

The FD ignores the passenger-crowding e↵ect, as the passenger boarding model (1) is20
linear. Therefore, a regime with excessively large qp and small q may not be consistent with actual21
transit system. This is a limitation of the current model. Note that scale of passenger-crowding can22

A  Macroscopic  and  Dynamic  Model  of  Urban  Rail  Transit:
Fundamental  Diagram  Approach

東京大学生産技術研究所大口研究室（交通制御工学）
和田健太郎（with  瀬尾亨,  福田大輔） http://www.transport.iis.u-tokyo.ac.jp/

Background  and  Objective
Urban mass transit such as metro plays a significant role in transportation in metropolitan areas. Its most notable usage is
the morning commute situation, in which excessive passenger demand is generated during a short time period.

Macroscopic  &  Dynamic  Model  Based  on  FD

Image  source:  http://www.tourism-review.com/worlds-10-most-crowded-subways-news3987  (Accessed  on  2017/05/14)

Fundamental  Diagram  of  Railway  Operation
• Considers an exit-flow model with the FD as the exit-flow

function
• Calculates train out-flow 𝑑(𝑡) and passenger out-flow 𝑑p(𝑡),

based on the FD function 𝑄(·) and initial and boundary
conditions 𝑎(𝑡), 𝑎p(𝑡), and 𝑇𝑇(0)

• Notable feature of model is high tractability

Validation  of  Macroscopic  Model
Ø Result of the microscopic model

• Colored curves represent trajectories of each train that
travels in upward direction while stopping at every station

Ø Result of the macroscopic model

Ø Comparison between microscopic and macroscopic models
• Macroscopic  model  

reproduced  results  of  the  
microscopic  one  fairly  
precisely

• Congestion  and  delay  during  
the  peak  time  period  were  
captured  well
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demand (which is the case for many metropolitan areas), dynamics of transit systems including delay 
and congestion must be taken into account, just like similar problems in road traffic (Arnott et al., 
1993). However, to the authors’ knowledge, no study has investigated the morning commute problems 
in transit systems with dynamic delay and congestion—in the aforementioned studies (Tabuchi, 1993; 
Kraus and Yoshida, 2002; Tian et al., 2007; de Palma et al., 2015), travel time of transit system is 
assumed to be constant and/or determined by static models. This might be due to that we do not have 
tractable models of transit systems considering physics of its dynamic delay and congestion.  
 
The aim of this study is to develop an analytical model of the dynamics of an urban rail transit 
considering physical interaction between the train-congestion and passenger-congestion, while 
keeping its analytical tractability high so that it can be applied to obtain policy implications on 
morning commute problems. In Section 2, a simple and tractable operation model of rail transit is 
formulated that considers train-congestion, passenger-congestion, and the interaction between them. 
The model describes theoretical relation between passenger-flow and speed under ideal conditions—
that is, a fundamental diagram. Then, in Section 3, a macroscopic and dynamic model of rail transit is 
developed by extensively employing a continuous approximation approach with the fundamental 
diagram, which is also widely used for auto traffic flow—that is, an exit-flow model. Finally, in 
Section 4, the approximation accuracy of the macroscopic model is validated through a comparison 
with microscopic simulation. 
 

2.! FUNDAMENTAL DIAGRAM OF RAILWAY OPERATION 

In this section, we analytically derive a fundamental diagram of an urban rail transit operation, namely, 
relation among train-flow, train-density, and passenger-flow, based on microscopic operation 
principles. 

2.1! Assumptions on Railway Operation 

We assume following principles on urban rail transit operation. They are twofold: train’s dwell 
behavior at a station for passenger boarding and cruising behavior between stations. Note that they are 
equivalent to those employed by Wada et al. (2012). 
 
The passenger boarding time is modeled using a bottleneck model. That is, the flow-rate of passenger 
boarding is assumed to be constant, !", if there is a queue; and there is a buffer time (e.g., time 
required for door opening/closing), #$, for the dwell time. Then, the dwell time of a train at a station, 
%$, can be represented as 

%$ =
'"
!"
+ #$, (1) 

where '"  is number of waiting passengers at the station (or total number of passengers who are 
getting in and off  the train). Passengers waiting a train at a station are assumed to board the first train 
arrived—it means that passenger storage capacity of a train is assumed to be unlimited. 
 
The cruising behavior of a train is modeled using the Newell’s simplified car-following model 
(Newell, 2002). In this model, a vehicle travels as fast as possible while maintaining the minimum 
safety clearance. Specifically, *+(%), position of a train . at time %, is described as 

*+ % = min *+ % − 3 + 453, *+67 % − 3 − 8 , (2) 
where . − 1 indicates the preceding train of train ., 3 is the physical minimum headway time, 45 is 
the free-flow speed (i.e., maximum speed), and 8 is the minimum spacing. Without loss of generality, 
we introduce variable buffer headway time, ℎ5 ;≥ 0, to describe traffic in free-flow regime; therefore, 
headway in free-flow regime is 3 + 8/45 + ℎ5. 

2.2! Steady State of Railway Operation 

Here we consider a steady state of an urban rail transit operation under the aforementioned 
assumptions. A steady state is an idealized state of a traffic where the state (typically flow, density, 
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(a) Free-flowing regime: v = vf , hf > 0.
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(c) Congested regime: v < vf , hf = 0.

FIGURE 1 : Time–space diagrams of rail transit operation under steady states.
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FIGURE 4 : Result of the microscopic model.

(a) Train (b) Passenger

FIGURE 5 : Result of the macroscopic model.

FIGURE 6 : Comparison between the macroscopic and microscopic models.

Comparison between the macroscopic and microscopic models is shown in Fig. 6 in terms1
of the cumulative plot of train. In the figure, the solid curves represent the result of the macroscopic2
model; therefore, they are identical to Fig. 5a. The dots represent the result of the microscopic3
model. They are computed from the discrete arrival times to specific stations, namely, upstream4
for A and downstream for D; therefore, they are consistent with Fig. 4. According to the figure,5
D of the macroscopic model reproduced that of the microscopic one fairly precisely. For example,6
congestion and delay during the peak time period were captured. However, it is slightly biased:1
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Variables:
µp :  passenger  boarding  flow-rate
gb :  buffer  time  (time  for  door  opening/closing)
np :  no.  of  waiting  passengers  at  station
xm(t)  :  position  of  a  train  m at  time  t
m – 1 :  indicates  preceeding  train  of  train  m
𝜏 :  physical  minimum  headway  time  
vf :free-flow  speed  
𝛿 :  minimum  spacing  
hf :  buffer  headway  time
H :  headway  time  bet.  each  successive  trains
l :  distance  bet.  each  adjacent  stations  
v :  cruising  speed  of  all  the  trains  
qp :  passenger-flow  to  each  station

1)  Train-congestion
Congestion  involving  consecutive  
trains  using  same  tracks

2)  Passenger-congestion
Congestion  of  passengers  at  station  
platforms

Two  types  of  congestion  in  rail  transit
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Railway system
internal average train-flow: Q(k(t) ap(t))
dynamics of internal average train-density:
dk(t)

dt
= a(t)�Q(k(t), ap(t))

travel time: TT (t)

train in-flow: a(t)
its cumulative: A(t)

passenger in-flow: ap(t)
its cumulative: Ap(t)

train out-flow: Q(k(t), ap(t))
its cumulative: D(t)

passenger out-flow: dp(t)
(determined by the model)

its cumulative: Dp(t)

FIGURE 3 : Railway system as input-output system.

Formulation1
Let a(t) be in-flow of trains to the transit system, ap(t) be in-flow of passengers, d(t) be out-flow2
of trains from the transit system, and dp(t) be out-flow of passengers, at time t, respectively. We3
assume that the initial time is 0, and therefore t � 0 holds. Let A(t), Ap(t), D(t), and Dp(t)4
be cumulative numbers of a(t), ap(t), d(t), and dp(t), respectively (e.g., A(t) =

R t

0 a(s)ds). Let5
TT (t) be the travel time of a train (and a passenger) who entered the system at time t, and its initial6
value TT (0) be given as free-flow travel time under q = a(0), qp = ap(0). In order to simplify the7
formulation, the trip length of the passengers is assumed to be equal to that of trains.7 It means8
that TT is travel time of both of the trains and passengers. These functions can be interpreted as9
follows:10

a(t): trains’ departure rate from their terminal station at time t.11
ap(t): passengers’ arrival rate to platform of their origin station (e.g., from their home) at12
time t.13
d(t): trains’ arrival rate to their destination station at time t.14
dp(t): passengers’ arrival rate to their destination station at time t.15
TT (t): travel time of a train and passengers in the train from its origin (departs at time t)16
and destination. Note that their arrival time to the destination is t+ TT (t).17

Therefore, in reality, the a(·) and ap(·) will be determined by transit operation plan and passenger18
departure time choice, respectively. The d(·), dp(·), and TT (·) are endogenously determined by19
the proposed model.20

The train tra�c can be calculated as follows. First, in accordance with the manner of the21
exit-flow modeling, the exit-flow, d(t), is assumed as22

d(t) = Q(k(t), ap(t)) (20)

where the FD function, Q(·), is considered as an exit-flow function. It means that the dynamics of23
the transit system is modeled as24

dk(t)

dt
= a(t)�Q(k(t), ap(t)), (21)

7This assumption can be reasonable if average trip length is shared by trains and passengers. If they are di↵erent,
modification such as TTp(t) = TT (t)/�, where � is ratio of average trip length of the passengers by that of the trains,
would be useful.
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都市鉄道の巨視的運行モデル：Fundamental  Diagramアプローチ


