A Macroscopic and Dynamic Model of Urban Rail Transit： Fundamental Diagram Approach

都市鉄道の巨視的運行モデル：Fundamental Diagramアプローチ
東京大学生産技術研究所 大口研究室（交通制御工学）
和田健太郎（with 瀬尾亨，福田大輔）
http：／／www．transport．iis．u－tokyo．ac．jp／

Background and Objective

Urban mass transit such as metro plays a significant role in transportation in metropolitan areas．Its most notable usage is the morning commute situation，in which excessive passenger demand is generated during a short time period．

Two types of congestion in rail transit
1）Train－congestion
Congestion involving consecutive trains using same tracks

2）Passenger－congestion
Congestion of passengers at station platforms

Develop analytical model of the dynamics of an urban rail transit
－Consider both types of congestion and physical interaction bet．them
－High analytical tractability
－Capable to obtain policy implications on management strategies

Macroscopic \＆Dynamic Model Based on FD

－Considers an exit－flow model with the FD as the exit－flow function
－Calculates train out－flow $d(t)$ and passenger out－flow $d_{p}(t)$ ， based on the FD function $Q(\cdot)$ and initial and boundary conditions $a(t), a_{p}(t)$ ，and $T T(0)$
－Notable feature of model is high tractability

Validation of Macroscopic Model

＞Result of the microscopic model
－Colored curves represent trajectories of each train that travels in upward direction while stopping at every station

＞Result of the macroscopic model

time $t(\mathrm{~h})$
（a）Train

time $t(\mathrm{~h}$
（b）Passenger
－Comparison between microscopic and macroscopic models

